If it's not what You are looking for type in the equation solver your own equation and let us solve it.
196=-16t^2+196
We move all terms to the left:
196-(-16t^2+196)=0
We get rid of parentheses
16t^2-196+196=0
We add all the numbers together, and all the variables
16t^2=0
a = 16; b = 0; c = 0;
Δ = b2-4ac
Δ = 02-4·16·0
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$t=\frac{-b}{2a}=\frac{0}{32}=0$
| 14/3=2y | | 8x-4-8=7x-1 | | 6s+2=44 | | 15x+18=-24x+96 | | 3(5x+6=8(-3x+12) | | 2.4=-6w | | 8p/5=6/5 | | 3-6x=-7x+10 | | 6=3.5x+28 | | 4x+7x+5x+7=26 | | -3(2x-5)+5(4x+6)=87 | | 19+4r=19+2r | | 20n-5=55 | | -8x+78=18x | | 5x-80=21x | | i^2+i-42=0 | | 12=12u-9u | | 3x+7=21x-18+97 | | 3y/8=1/8 | | 3x+7=3(7x-6)+78 | | 17=-3-4m | | i^2+i=42 | | -3(3x-5)+5(4x+6)=78 | | 10.1=t+7.3 | | 0=x^2+5x-10 | | 3(3x-4)+4(2x+5)=59 | | y=-(-1)+10 | | 8x-10+9x+18=42 | | i^2-20(i)+100=0 | | 4x=4+2(3-x) | | 0=x^2+5x+10 | | y+(6-4)=8-(4-1) |